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Nonlinear reduced fluid equations for toroidal plasmas
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Laboratory for Plasma and Fusion Energy Studies, University of Maryland, College Park, Maryland 20742
(Received 23 August 1983; accepted 16 December 1983)

Nonlinear reduced fluid equations are derived for studying resistive instabilities in large-aspect-
ratio, low-beta toroidal plasmas. An ordering is developed in which plasma compressibility as

well as the poloidal curvature are retained. The nonlinear equations can be linearized and used to
reproduce the Mercier criterion in the large-aspect-ratio, low-beta limit. A second set of reduced
equations is derived from the Braginskii fluid equations. These equations, which are very similar
to the reduced magnetohydrodynamic equations, contain diamagnetic effects as well as parallel
transport associated with magnetic fluctuations. Both sets of equations conserve energy exactly.

I. INTRODUCTION

Resistive tearing and ballooning modes are believed to
play a dominant role in both the stability and energy confine-
ment in tokamak discharges.” During the past few years
extensive numerical calculations have been carried out to
develop an understanding of the nonlinear behavior of these
instabilities.”* Most of this computational work has been
based on the reduced magnetohydrodynamic (MHD) equa-
tions.>®

The reduced MHD equations were derived for the
study of global ideal kink modes in a pressureless plasma’
and subsequently extended to include finite pressure for the
study of pressure-driven modes.® The advantages of using
the reduced equations, rather than the full MHD equations,
are twofold. First, the reduced equations are simpler, involv-
ing a few scalar quantities. Second, the reduced equations do
not describe the compressional Alfvén wave so that the max-
imum step which can be taken is not limited to the time it
takes an Alfvén wave to propagate one grid space across the
magnetic field.’

The ideal reduced equations have been modified to
study resistive modes by adding a term 7J, to Ohm’s law,
where 7 is the resistivity and J|, is the parallel current den-
sity. The resulting equations have been used to study the
evolution of resistive pressure-driven modes.” However, it
was subsequently realized that the linear theory of resistive
modes based on the reduced equations did not correspond to
that based on the full set of resistive equations.® In particu-
lar, the effects of plasma compression, average favorable cur-
vature, and parallel inertia, which can have a strong stabiliz-
ing influence on resistive modes,’!® are not present in the
reduced equations.

The original ideal reduced MHD equations were de-
rived to study global modes with large growth rates. Specifi-
cally, it was assumed that the perpendicular scale length of
perturbations was of the order of g, the minor radius of the
tokamak, and that the time scale for the evolution of per-
turbed quantities was of the order of the Alfvén time,
TAo=R /c,, where R is the major radius and c,,_is the Alfvén
speed. While these assumptions are valid for global kink and
ballooning modes they are not valid for resistive modes
which evolve more slowly and are usually strongly localized
in minor radius. Resistive modes are inherently weaker in-
stabilities, are much more sensitive to the detailed magnetic
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geometry, and therefore require more physical effects to
properly describe. The ad hoc inclusion of resistivity in the
ideal reduced equations does not lead to a consistent set of
reduced equations for resistive modes. In this manuscript we
expand the fluid equations with an ordering which is appro-
priate for resistive modes, namely,

—1
_<7-A )

at
V., »a "},

where 1 refers to the direction perpendicular to the magnetic
field B. As in Strauss’ original derivation of the reduced
MHD equations, the fast Alfvén modes are eliminated by
neglecting inertia in the component of the one-fluid momen-
tum equation which describes the plasma compression. One
is then left with an equation for local force balance (total
pressure, magnetic and thermal, balancing the magnetic
stress). As a consequence, the plasma is incompressible to
lowest order although we show that corrections due to finite
compressibility must be retained when investigating resistive
modes. The elimination of these fast modes is fundamental
to the development of a set of reduced equations.

Two sets of reduced equations are derived: the first
from the resistive MHD equations and the second from the
Braginskii fluid equations.'' Both sets of equations conserve
energy exactly and can also be used to reproduce the Mercier
criteria for a large-aspect-ratio torus, i.e., average favorable
curvature for g = B,r/RB, > 1.2

The reduced resistive MHD equations, which are de-
rived in Sec. II, have five independent variables: the stream
functions @ and ¢, the pressure p, the mass density p, and the
parallel flow v, . For a constant mass density p = Mn, where
M is the ion mass, n drops out so v is the only new variable
not in Strauss’ original equations. Finite compressibility as
well as the curvature of the poloidal field are retained.

The reduced Braginskii equations, which we derive in
Sec. III, are very similar to the resistive MHD equations of
Sec. I1. The Ohm’s law, which comes from electron force
balance, now contains pressure terms which in linear theory
cause the diamagnetic rotation of drift waves and drift-tear-
ing modes.”® An equation for the electron temperature
T.(T, = 0) replaces the pressure equation which appeared in
the resistive equations of Sec. II. Parallel thermal conduc-
tion is included in this equation for 7, so that transport re-
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sulting from magnetic fluctuations is self-consistently in-
cluded and does not have to be added in an ad hoc manner. It
has recently been shown that VT, has a stabilizing influence
on the linear tearing mode.'* The linearized versions of our
nonlinear equations in toroidal geometry can be used to re-
produce this stabilizing effect.

Il. RESISTIVE MHD EQUATIONS

We begin with the equations of compressible, resistive
MHD,

dv (JXB)

2y _yp4 XD 1
P p+ " (1)
E + (vXB)/c =1d, (2)
VXB =47J/c, (3)
VB =0, (4)
VXE= _ 1L 9B (5)

c

dp 2
= Vv ={y. — 1)3d?, 6
7 +v.pVv={y, - )y (6)
dp
el il Vev =0, 7
& +pVev (7)

where p is the mass density, p is the pressure, E and B are the
electric and magnetic fields, v is the fluid velocity, J is the
current density, ¥, is the ratio of specific heats, and 7 is the
resistivity. The total time derivative is given by

—_—=—4vV. (8)

As discussed in the Introduction, we are interested in
following time scales which are much longer than compres-
sional Alfvén time,

—‘%<cA v,.
In this limit the largest terms in the momentum balance
equation in the directions perpendicular to the magnetic
field describe static force balance, that is

0~V, (p + B/87) — (1/4m\B %, (9)

where we have used Eq. (3) to eliminate J and have defined
the field line curvature,

K = bVh, (10)

where b = B/B is the unit vector in the direction of the mag-
netic field. By neglecting inertia in Eq. {9) we have eliminated
the compressional magnetosonic wave. Taking the curl of
Eq. (1) and forming the scalar product with b, we obtain
information about the noncompressible motion of the plas-
ma

——b'VXp dv J|| < bXk

B dt B 4r B
where J; = b-J. The pressure balance relation in (9) then
enables us to rewrite (11) as

b dv (J") bX«x
R 4Y _Bv 20 22K vo. 12
¢ B Xp dt + B P (12)

22F.vp2 (11)
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Finally, the component of Eq. (1) in the b direction gives

dv

pb o bV p. (13)
Thus, the momentum balance equation reduces to two equa-
tions that evolve the velocity, Egs. (12) and (13), and one
equation describing force balance, Eq. (9). Equation (12) ba-
sically describes the rotation of the fluid around b, while Eq.
{13) describes the motion along b. Our description of v is not
yet complete since we have not yet determined V-v. This
information is obtained by requiring that the pressure and
magnetic field evolve so as to maintain force balance, Eq. (9).

We now examine Ohm’s law, Eq. (2). In the low-fre-
quency limit (d /dt<c, V,), the plasma motion is nearly in-
compressible and is driven dominantly by the EXB drift
produced by the electrostatic potential @ (this is shown ex-
plicitly later). To lowest order, Eq. {2) reduces to

v, = —cVd Xb/B. (14)

As in our previous manipulations of the momentum equa-
tion, the dominant (V& ) component of Eq. (2) is annihilated
by taking the curl of the equation and dotting with B,

a B?
(5 + vl-V) BN — BYVev, 4+ kev))

= —4aJ? — c*VqV p, (13)

where we have used (5) to eliminate V X E and have approxi-
mated J XB/c~V p in the resistive term. Equations (6) and
(15) formally evolve p and B ?, respectively. However, since p
and B > must also satisfy local force balance [Eq. (9)), Eq. (15)
effectively determines Vv, . Thus, all three components of v
can now be computed. Our treatment of Ohm’s law is com-
pleted by dotting with b,

E, =qnJ,. (16)

In order to proceed further we introduce a specific or-
dering appropriate to the study of low toroidal mode number
modes in a large-aspect-ratio tokamak. A difficulty in deve-
loping an ordering for resistive modes is reconciling the fun-
damental differences in the structure of perturbations in the
region near rational surfaces where b+V is small and V, is
large and away from the rational surfaces where the pertur-
bations are more global. We have found that it is necessary to
retain more information to correctly model the plasma near
the rational surfaces and we have adopted an ordering which
is appropriate for this region. The resulting equations, of
course, also correctly describe regions away from the ration-
al surface.

We take as our fundamental expansion parameter e,
where

€=a/R«]1,

and R and ¢ are the major and minor radii of the torus. We
consider a low-pressure plasma with 8 = 87 p/B ? given by

B~€. (17a)

The magnetic field components in the toroidal direction (B,)

and the poloidal plane (B, ) satisfy
B,/B, ~¢. (17b)
The time derivative is assumed to scale as
J. F. Drake and T. M. Antonsen, Jr. 899



d €

— st r—

at T,

and the perpendicular and parallel gradients are assumed to
fall in the ranges

y (17¢)

(€a)"'RV, Ra", (17d)
and

R™'ZV, 2R (17¢)
The fluid velocities v, and v are taken to scale as

€ca RV, REC,, U ~EC,, (179)
and the resistivity is given by

TA/T, ~€5, (17g)

where 7, = 41a*/nc? is the macroscopic resistive diffusion
time.

The motivation for this ordering is not obvious at first.
The choice S~ € is appropriate for resistive modes since for
B ~ € ideal ballooning modes may be unstable,’ which is the
case considered by Strauss.® The condition B, /B, ~ € is cho-
sen so that the safety factor ¢ = rB,/RB, is of order unity,
which is appropriate for tokamaks. The orderings for the
time derivative, the spatial gradients, and the resistivity are
basically identical to that which would be obtained in carry-
ing out a linear stability analysis of Egs. (1)—(7) and are some-
what more complex than in Strauss’ reduced equations. The
perpendicular gradient V, actually has two components. In
the direction perpendicular to the initial flux surfaces (along
V ¢, where ¢ is the flux function), the spatial scale 4 of the
perturbations is of order 4 ~ €%a, while in the bX V ¢ direc-
tion (essentially poloidal) V, ~a~! so that we formally con-
sider low-order poloidal modes. Again, we consider this or-
dering because it requires the most physics to properly treat.
Our equations are also correct in the strongly turbulent re-
gime when V| is isotropic.

The parallel gradient V| has a similar two-scale struc-
ture. Toroidal curvature drives pressure and velocity pertur-
bations with ¥, ~R ~'~ea~". At the same time in a region
of order 4 ~€a around the rational surface magnetic shear
causes b-V~k ~kA/L,~4 /aR~€ea"", where ka~1
and L, ~R is the magnetic shear length. The operator b-V
can actually have a range of values between these two limits,
depending upon which physical variable it is operating. This
two-scale structure is also a characteristic feature of linear
resistive modes in toroidal geometry.'¢

The ordering of velocities is also more complex than in
Strauss’ equations. Since to lowest order the plasma is in-
compressible, Vv~V -y, ~0. The anisotropic ordering of
V, also implies that v, in the V ¢ direction is €* smaller than
in the bX V ¢ direction, as indicated in (17f). The magnitude
of v, follows from the assumption that convective and time
derivatives are comparable,

%~v 'V, (18)
The scaling of v, and the remaining nonlinear terms in Eqs.
(1)-(8) follow entirely from these assumptions. It will be
shown, for example, that the pressure fluctuations are of
order
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ﬁ -~ 621’ 0
so that

V. p~V, po~V, p~po/a,
where p, and p are the “equilibrium” and “perturbed” pres-
sures. Of course, the distinction between ‘“‘equilibrium” and
“perturbed” quantities has no meaning once the system has
evolved nonlinearly so that p,( p) actually represents the long
(short) space scale component of the pressure. Similar rela-
tions hold for the density and other physical quantities.

We now consider the vorticity equation, Eq. (12). Using
the ordering presented in (17), we find that the inertia term
on the left-hand side of Eq. (12) scales as

4
1 1 626_; _€B
B éa 1, 2

(N
The leading contribution to the curvature term on the right-
hand side of Eq. (12) scales as

Pl 1 _PBB_¢€B
a BR aR a*’

where the main contribution to the curvature comes from
the toroidal magnetic field. This term is one order in € larger
than the inertia term. However, it tends to be canceled by a
portion of the divergence of the parallel current. This cancel-
lation is well known in the linear theory of resistive instabili-
ties.'® Thus, in order to retain inertia it is necessary to evalu-
ate the two terms on the right-hand side of Eq. (13) including
corrections of order €. This requires inclusion of the poloidal
curvature and order € corrections to B, b, and b*V. Since the
toroidal and poloidal magnetic fields, B, and B,,, enter b*V at
the same order, € corrections to both B, and B, must be
calculated. From Eq. (9) we see that the pressure and poloi-
dal curvature will only contribute corrections of order €* to
the magnitude of B. Thus, to first order in ¢,

B~B,~B,R,/R, (19)
where B, and R,, are constants. The magnetic field B can
then be written as

B~B, + B,R,V9,
where ¢ is the toroidal angle. Since V+B = 0, and V*¢ = 0,
B, must be divergence-free so that B can be written as

B=Vg¢ XV ¢+ B,R,V &, (20)
where 1 is a poloidal flux function. We note, however, that in
general field lines do not lie in curves of constant i since

BV ¥ = B,R,V ¢V ¥#0,

the exception being the case of axisymmetry when ¢ is inde-
pendent of ¢. We note also that if € corrections to B, asso-
ciated with pressure or poloidal curvature are added to (21),
i.e., weinclude B, =fV¢ ~€ ByR,V ¢, an additional com-
ponent of the poloidal field B,, must be added so that

V-B = (Vf)}Vé+ VB, =0.

However, the correction By, is at most of order aV -V ¢
~€°B,, which is an €* addition to B, in Eq. (20) and can be
neglected. Thus, the expression for B in (21) includes all €
corrections to both B, and B, and is sufficient to evaluate
bV, B, and bX«k in Eq. (12).

J. F. Drake and T. M. Antonsen, Jr. 900



In order to obtain an equation for ¥, we substitute B as
given in Eq. (20) into Eq. (3) and take the component in the b
direction. Keeping terms to first order in € we find

R?V-R ~*V ¢ = (4n/c)RJ = (4m/c)R,By{J, /B). (21)

In evaluating the curvature term in Eq. (12) we must
also retain first-order corrections in €. Using Eq. (20) we
write

b=¢&, +b, (22)
where b, = B, /B. The curvature is then given by

k=28,V&, +&Vb, +b,Vb,, (23)

where the first term is the toroidal field curvature and the
second and third terms are smaller than the first by one pow-
er of €. The term b,°Vé, does not appear in (23) since it
vanishes due to the fact that b, lies entirely in the poloidal
plane. The quantity which is required for Eq. (12) is bXk,
which, including order € corrections, is given by

bXk =&, X(&,°Ve,) + b, X(€,°Ve,) + &, X (b-V)b,

(24)
where the second and third terms are smaller than the first
by one power in €. Equation (24) can be further simplified by
noting that the second term has no component in the poloi-
dal plane and, since it is a first-order correction, may be
dropped. Furthermore, the third term may be rewritten by
interchanging the order of the derivative and the cross pro-
duct. This generates an error of order €2, which can be ig-
nored. Thus,

bX kavds X(845°VE,) + b-V[Vis/(RoBo)]
~ — V& XVR +bV[VY/(R,B,)]. (25)

We now return to evaluate the velocity. The evolution
equation for v is obtained from (13). To leading order b is
time and space independent so we commute b with the time
derivative to obtain

d
—v, = —bVp. 26
P ) p (26)
We return to Eq. (15) to find V-v,. Using the pressure
balance relation in Eq. (9), Eq. (15) can be rewritten as
a B? ( Yy )
B Vev — BV — 4 2k
a2 " B AT
=47mv,'Vp —4dmyJ? — VeV p. (27)
From the pressure equation and force balance we have
P o8
Jr ot
The first terms on both the left and right sides of (27) are
B~ € smaller than B ?V-y and can be neglected. The Ohmic
heating term 7.J ? is even smaller so that (27) reduces to
— (¢*/B%)V5V p. (28)
Thus, the curvature of the magnetic field produces a diver-
gence of the perpendicular flow such that

~V,*Vp~pVev.

Vv, = — 2Ky,

v, v, v,
Vv, ~—~e —<—

R 44
so that the fluid motion is nearly incompressible. Finally, we
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note that by taking the divergence of our lowest-order veloc-
ity in Eq. (14) and using the pressure balance relation to
relate V B2 and xB 2, we reproduce the first term in (28) so
that even the small compressible portion of the flow arises
from the electrostatic potential. The velocity v, can there-
fore be written as
bxx c?
——"vp

B3
or approximating the incompressible portion to lowest or-
der,

v, = — ch(b;) + 2¢cP

bX«k

cR, ¢
v, =—2V¢ XVD + 2cP ——nVp. (29)
B, B}
The term proportional to resistivity in (29) represents classi-
cal cross-field particle transport and is formally small in our
ordering. However, near marginal stability when d /d is
smaller than €?/7,, this term can be important so it is re-
tained. With v, given in (29), the evolution equation for p
assumes the form

d YsP
— 4+ vV — VeV
ar (Bo ) 7 ],,

v bXxx
+ 7. (B-vi+2c——-v qb)
VP 3 3

= (¥, — I § +¢*|V p|*/B3). (30)

The magnitude of each of the terms in (30) can now be com-
puted using the ordering in (17). The dominant terms are
associated with the divergence of the flow,

v v PCa
ol BV _”_>~ S A
”P( 8)PR7° R

bX PCA

2 XK 96 prev~p Ll
VP P p R R
which are one order in € larger than dp/dt,

C
3]:_~“'Vp~65 e —pTA,
and therefore must balance to lowest order. The divergence
of the perpendicular velocity drives a parallel flow with
v, ~v,. This result is a consequence of our assumption
d/0t~€%c, /R ~ec,/R<c,/R, which also implies that the
parallel pressure gradient, which is driven by the curvature,
is flattened by the sound wave. The residual parallel pressure
gradient is sufficient to drive the parallel flow. The lowest-
order cancellation of V-v, and B-V(v,/B ) implies, as in the
momentum equation, that the poloidal curvature and order
€ corrections to B, and B, must be retained in Eq. (30). The
Ohmic heating terms on the right side of (30) are formally
small but are retained to conserve energy.

Finally, the inertia term in the momentum equation
[Eq. (12)] can be expressed as

b dv d
B dr B 2 dt

where we have approximated B, b, and v to lowest order
since the inertia is already one order smaller than the indi-

J. F. Drake and T. M. Antonsen, Jr. 901



vidual terms on the right side of (12). Our equation for the
potential @ now becomes

V d

B} P ar

To complete our parallel Ohm’s law in Eq. (16), we cal-
culate E by inserting Eq. (20) for B into Eq. (5),

—2E9p. (31)

E= —vo+ L%y
¢ Ot

Equation (16) then yields an evolution equation for the poloi-
dal flux function ¢,
1 Y _
R ot
We now summarize our system of equations. Five equa-
tions which evolve the quantities @, v, ¢, p, and p are the
vorticity equation,
2
£ vy 4
B2 " dt

the parallel momentum equation,

J| bXk
VO =BVl 420 225y p, 33
g TX—5 VP (33)

a'v||
L= _pvp; 34
P P (34)

the parallel component of Ohm’s law,
1 oy

R 3
the pressure equation,

dp ( Yy ) [( cVp )2 2
=4y, pl Vv, + BV 2 )=y, — 1 +Ji;
4 + ¥ P 1 B (¥ n B, l

=bVP + J;; (35)
II

(36)
and conservation of mass density,
dp ( ] )
Y 4+ p{Vv, +BV—]=0. 37
dr P 1 B {37)

The quantities B, b, v, , J;, and bX k are given in terms of @,
1, and p. The magnetic field is represented as

B =V¢ XV + R.B,V4, (38)
where ¢ is the toroidal angle, R, is the major radius of the
magnetic axis, R ~' = |V¢ |, and B, is a constant. The modu-
Ius of B is given by

B=R,B,/R, (39)
and

b=B/B.

The quantity bX k is
bXk= — V¢ XVR + b-V[Vy/(RoBy}]. (40)

The perpendicular component of the fluid velocity is ex-
pressed in terms of @ and p,

2
v, = _ RV XV¢+2 o DXx bX«k chp’ (41)
B, B B3
and the total time derivative is
"d‘ = "‘z + Vl 'V + U” b'V. (42)

dt
Finally, the parallel current satisfies
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R*V-R "Wy = (47/c)RoBo\J, /B). (43)

Our equations reduce to the high-8 equations of
Strauss® if the curvature is evaluated to lowest order [second
term in (40) is neglected], the plasma flow is taken to be
incompressible [ v, is neglected and only the first term in (41)
is retained], the mass density p is taken to be a constant, and
R is approximated by R, in (35) and (41). With this system of
equations, Strauss showed that the total energy

2| V212 1 Vg
Ws = f dx( pe B T w | TR RO))
is conserved. The first two terms are the flow and magnetic
energy, respectively, while the last term represents the po-
tential energy of an incompressible plasma in the “gravita-
tional” potential 2{R — R,). In contrast, the set of equations

given in (33)—(43) exactly conserves the energy

W= f [87 2 yp—l

i 2 c? 2
+—p|lvy + —|VO , 44
zp(u B?)I |)] (44)

and in our ordering scheme the time variation of each of the
individual terms in (44) are comparable. To ensure total en-
ergy conservation, certain symmetries in the reduced equa-
tions must be maintained. For example, in the convective
derivatives d /dt = 3 /dt + v-V in Eqs. (3) and {20)—(22), the
component of v-V arising from the compressible part of v is
formally small in our ordering yet it must be included to
conserve energy.

Frequently the mass density p is not evolved in MHD
simulations. However, simply replacing p in (33) and (34) by
a constant and discarding (37) does not yield a set of energy-
conserving equations. The time variation of p and the com-
pressibility of the flow are inherently linked so that in replac-
ing p by a constant the velocities in the convective derivatives
in (33) and (34) must be approximated by their incompress-
ible counterparts.

The average magnetic well in a tokamak withg > 1 hasa
strong stabilizing influence on pressure-driven modes. It is
shown in the Appendix that by linearizing our reduced equa-
tions we can reproduce the Mercier criterion in the large-
aspect-ratio, low-8 limit,*?

_2r L dp( 1 ) 1
D —_ 1 —= <—, 45
M~ R2 B2 dr ) 4 “3)

where L, = ¢q°R,/(r dq/dr) is the magnetic shear length.
The system of equations derived here for resistive
modes in a low-8 plasma contains as a special limit the high-
B equations of Strauss.® This does not imply that our equa-
tions are valid for resistive modes in a high-8 plasma. Rath-
er, they are valid for ideal modes in a high-f plasma (as are
Strauss’ equations) and resistive modes in a low-5 plasma.

li). NONLINEAR REDUCED BRAGINSKII EQUATIONS

The resistive MHD equations are a useful starting point
for studying resistive modes in toroidal plasmas. However,
many physical effects are not included in these equations.

J. F. Drake and T. M. Antonsen, Jr. 902



The rotation of electrostatic or electromagnetic perturba-
tions at the diamagnetic frequency

LI B (46)
eBn dr a

has been observed in many experiments and has been pre-
dicted to have a strong stabilizing influence on both cur-
rent'* and pressure-driven modes.'” In the definition of &, ,
n is the plasma density and p, = ¢,/{2, is the ion Larmor
radius based on the sound speed ¢,. To incorporate the dia-
magnetic rotation into the ordering presented in Sec. II, we
require

—_——— —~

or
ps/a~€.

In resistive MHD, p /a—0 so these effects are not included.
In recent years the importance of transport induced by
magnetic fluctuations in tokamak discharges has been wide-
ly acknowledged both during major disruptions® and in
more quiescent phases of the discharge.>'® The transport
resulting from radial magnetic fluctuations B, becomes
comparable to that associated with radial flow 7, when

(4] 2

—_ ~U; At,

B/ v

where v, = (2T.,/m,)"/? is the electron thermal velocity, v,;
= (4/3)(2m)"?ne* In A /m}*T3/? is the electron—ion colli-
sion frequency, and At is the correlation time of the radial
flow. This relation can be rewritten as

T, (p) (73', ) ( B, ) At
Ta \a B o/ Ta '
Our ordering in Sec. II requires B,/B~0,/c, and At /7,

~€* so that transport induced by magnetic fluctuations
again becomes important when

ps/a~ée,

and so is not included in the MHD equations. In the past
such transport has been incorporated into MHD simulations
of resistive instabilities non-self-consistently? and hence the
results must be considered as tentative.

To derive a set of nonlinear equations which incorpo-
rate both diamagnetic rotation and other effects, we begin
with the Braginskii fluid equations.!" In the limit

p2Vil,

a

9w, 47
at<vel ( )

v2
* {bV 2¢l,
AL

el

the electron inertia and the stress tensor in the electron mo-
mentum equation can be neglected and the stress tensor can
be discarded in the electron temperature equation. The elec-
tron equations can then be written as

D, +n,V 0 (48)
T~y R, VY, =0,
Dt ¢
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R, =n.e[E + (v, XB)/c] + Vp,, (49)

3 DT, J
=n, +n,T,Vv, +Vq. =R,;*—, 50
2 Dt % ne (50)
where
R, =n.end —0.71n,bb:VT, —3(n,v /2,6 X VT,

(51)

is the momentum transfer between electrons and ions with

M = (I — bb)y, + bby,,
and

7, =0.57, =0.5m,v,,/n,ée.
The first term in Eq. (51) is the usual collisional momentum
transfer due to the relative mean velocities of electrons and
ions. The second and third terms are the so-called parallel
and perpendicular thermal forces. The quantity g, in Eq. (50)
is the heat flux

J
0= —0nT Lo+ 20, BB _24n v w7,
e c

5 nT,

bXVT, — k,bb-VT,, (52)
m

with p, =v,/f2, the electron Larmor radius, and «

=3.2n,T,/m,v, the parallel thermal conductivity. The
first two terms in Eq. (52) are heat fluxes driven by the cur-
rent and are conjugate to the thermal force terms in Eq. (51).
The third and fifth terms are due to classical perpendicular
and parallel thermal conductivity, and the fourth term is the
collisionless gyro heat flux. In Eqs. (48) and (50) the total
time derivative of the electron fluid is given by

D 4
—=—+4v, " 53
Dt o 33)
The ions are taken to be cold so we have only the ion contin-

uity and momentum equations

dn,

i n Ve, =0, 54

dt Y (4
dv, XB

m,.n,.—'i=n,.e(E+v’x )—Re,.. (55)
dt c

The limitations of these equations must be considered
in applying them to tokamak discharges. Of the three in-
equalities in (47), the first is always satisfied for modes of
interest, the second is satisfied for low poloidal and toroidal
mode numbers even for reactor parameters, while the third
is almost never satisfied. In toroidal geometry bV ~R ~!so0
that this inequality requires

v, /v,; 4R,

i.e., that there are no trapped particles. A second limitation
is the neglect of ion temperature. For values of the resistivity
in present tokamak experiments, the scale size 4 of unstable
current- or pressure-driven modes (in linear theory) is of or-
der p,. Effects of finite ion Larmor radius can therefore only
be properly incorporated into the analysis by using kinetic
theory. Such a calculation is beyond the scope of the present
investigation so we consider the limit 7, = O as a model. It
should also be noted that there is some evidence that finite
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ion temperature does not strongly modify the stability of
dissipative modes.'®
With these limitations in mind, we proceed to develop a

set of reduced equations from Egs. (48)—(55). The equations
can be made structurally more similar to the resistive MHD
equations by using the electron force balance equation in (49)
to eliminate R,; in Eq. (55) and then noting that because
m,/m; €1, the fluid velocity v~v;. Equation (55) then be-
comes

n 47 _IXB

"odt c
when n = n, = n; because of charge neutrality and p = p, is
the electron pressure. Equation (56) is identical to its MHD
counterpart in Eq. (1). The ion continuity equation can simi-
larly be rewritten as

i‘;i 4 nVv =0, (57)

-Vp (56)

which is the Braginskii counterpart of the equation for the
mass density in MHD. The equation for electron force ba-
lance in (49) combined with Eq. (51) for the momentum
transfer constitute Ohm’s law for the Braginskii equations.
This Ohm’s law can also be transformed to appear more like
its MHD counterpart by eliminating v, in favor of vand J,

v, =v— J/ne,

and then using (56) to obtain

I =E+ vXB m; dv Lo bbVT
c e dt e
3 Vei
+75bXVT. (58)

The anisotropic resistivity, ion inertia {(Hall term), and the
two thermal force terms are new effects which did not appear
in resistive MHD.

Finally, the electron velocity v, can also be eliminated
from Eq. (50) for T, which can then be rewritten as
3 d T 3

I
3,dT 3 VT — D p o bXKVT
2" dr 2(+ B) 7 Peve X

5 3 n
——p.U, n bv +____(1_+__. )
8p LVnXbVT 5 B

i

dv “LBVT— 1.79,n p2v,V, T
+ __3_ pe ei JXB'VT
4 T

J
= —nTVv—Lybvn—071 Lpv il
ne e B

T dv 3
—————ben———V- v, TVn + Jmed.
0, dr b

(59)
Most of the terms in Eq. (59) scale as p, /a. For example,
Toyli T 1B nT po
e B ¢ R 4ma Th 4@
so that in the limit p, /a—0, Eq. (59) simplifies to
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3 dp 3 pe ei
=219, v.T —— JIXBVT
2 dt ad + cT X
= —3pVev —2V2v, TVn + Jmd, (60)

where the ion continuity equation has been used to write (60)
as an equation for p. Aside from the extra cross-field trans-
port terms and the anisotropic resistivity, Eq. {60) for p is
identical to Eq. (6) with y, =

The basic operations which were carried out to obtain a
set of reduced equations in the MHD limit can now be re-
peated on Eqgs. (56)-(60). The parallel Ohm’s law, obtained
by dotting Eq. (58) with b and using (56) to eliminate v,

1 dy 0.7t
=,J +bV<D——bV ————bVT, 61
R =M ne e (©1)
now contains pressure terms which cause magnetic pertur-
bations to rotate at the diamagnetic frequency.'>'* The per-
pendicular fluid velocity v, now includes a correction asso-

ciated with the ion polarization drift

v, = — R vop w4+ 200 b’;"
0
c d mcz( 1 )
_ Yo _ T vy n_Luvr) (&
B2, dr g\ T (€2

From Eq. (59), the electron temperature satisfies

J
f’-nﬂ—s——”CTV(bx" T)—ilb-VT
2 dt, e B 2 e

K
— BV B_”2 BVT — 2.4Ve{np?v,,)VT

J
= 1TV + 171 LByl _ L pyn
e B ne
+pe e
3 1 T 2 2
__4‘7‘7' pva Yo+ J Y, (63)
where
vo=v+—"2vo
B2, dt
(64)
d ad
=—+vyV
d, d  °

Asin the case of the resistive MHD equations, the cross-field
transport terms in Eqgs. (62) and (63) are formally small ex-
cept near marginal stability. The reduced nonlinear Bragins-
kii fluid equations for toroidal plasmas are virtually identical
to those derived from resistive MHD. Only the evolution
equations for # and p in Egs. (35) and (36) and the fluid
velocity v in Eq. (41) are altered. They are replaced by the
corresponding equations for ¥, T, and v in Egs. (61)}-(63).
The nonlinear reduced Braginskii equations satisfy the
same energy conservation law as do the reduced resistive
MHD equations. The energy W defined in Eq. (44) is con-
served exactly by the reduced Braginskii equations for
¥, = 3. The parallel pressure-driven currents, which are de-
scribed by the Ohm’s law in Eq. (61) and the complicated
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transport and compression terms in the temperature equa-
tion in (63), ultimately cause a redistribution of thermal ener-
gy but introduce no new sources or sinks.

The influence of diamagnetic rotation on the nonlinear
evolution of resistive tearing modes in cylindrical geometry
was studied previously by assuming 7" was contant in both
space and time, neglecting v, and the magnetic curva-
ture.?*?! In this limit the reduced Braginskii fluid equations
are given by

2
£ volvo=vvi,
B} dt
V2 = 4aJ, /e,
dp
2L Vv =0,
a0 + pVev
B =2XVy + 2B, (65)
2
— S sxve— < dygp_ M TV,n,
B, B2, dt B2
1 dy T
——L=nJ; +bV® — —b'Vn,
c ot e ne

where the major radius R has been absorbed into the defini-
tion of ¥ and b = B/B,,. These equations are also identical to
those recently derived by Hazeltine.?” Since the temperature
has been taken as a constant in these equations, the usual
energy conservation law given in Eq. (44) should no longer be
satisfied. Nevertheless, multiplying the vorticity equation by
@ and integrating over x, we calculate

2 [ ax(5p V0 v+ p1n )
ot 2" B} 8

2
= - fdx(n,,Jﬁ + mb%wlnﬁ). (66)
o]

The right side of the equation is the rate of energy loss due to
the dissipation of the parallel and perpendicular currents.
This energy is lost since T is taken to be a constant. The first
and second terms on the left side of Eq. (66) are the usual
expressions for the perpendicular flow and magnetic energy,
respectively. The third term on the left side of Eq. (66) plays
the role of the internal energy.

IV. CONCLUSIONS

We have derived two systems of nonlinear equations
which describe resistive tearing and ballooning equations in
large-aspect-ratio, low-8 tokamaks. The first system of equa-
tions is based on the one-fluid resistive MHD equations and
the second system is based on the two-fluid Braginskii equa-
tions. The compressional Alfvén wave has been eliminated
from both sets of equations.

The system of equations based on resistive MHD is an
extension of the original work of Strauss.>® Strauss’ reduced
equations were derived by expanding the ideal MHD equa-
tions in a power series in the inverse aspect ratio € with an
ordering based on global ideal modes. We have developed an
ordering appropriate for resistive modes, which grow more
slowly than ideal modes and have localized radial structure
near mode rational surfaces. Qur equations included the sta-
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bilizing effects of plasma compressibility and average favor-
able curvature.

Recently, Schmalz® and Strauss®* have derived equa-
tions to describe resistive modes in a large-aspect-ratio toka-
mak. Their basic approach was to simply retain Strauss’
original ordering™>® for the time and space scales and expand
the MHD equations to higher order in powers of €. In princi-
ple, this procedure will eventually yield a set of equations
which are sufficiently accurate to describe resistive modes in
a large-aspect-ratio tokamak, yet this approach is somewhat
arbitrary. If the extra terms are higher order in €, why must
they be retained? The answer is, as we have emphasized in
the Introduction, that the original ordering developed by
Strauss is not appropriate for resistive modes. Nevertheless,
it is useful to compare our results with those obtained by this
other approach. Schmalz neglected both the parallel com-
pression and cross-field particle transport in evaluating V-v
in the equation for pressure p. In this limit the compressible
stabilization of low mode number resistive ballooning mode
is absent® and his equations are therefore not appropriate
for the study of these resistive curvature-driven modes.
Strauss’ equations are essentially the same as ours in the
limit B~ € (he retains the diamagnetic depression of B, for
3~ ¢€) although he also neglects cross-field particle transport.
Because we have not included the diamagnetic depression of
B, our equations cannot be used to reproduce the stabiliza-
tion of the ideal m = 1 mode at low 8.26%"

The second system of equations, which is based on the
two-fluid Braginskii equations, is appropriate when the time
scale is comparable to the diamagnetic drift frequency. This
system of equations includes the effects of compressibility
and average favorable curvature, as well as the effects of
parallel electron pressure gradients in Ohm’s law, the ion
polarization drift, and parallel electron thermal conductiv-
ity. These latter effects have been shown to have a strong
stabilizing influence on linear tearing modes.'>!* In addi-
tion, since parallel thermal conduction is included in the
equation for the electron temperature, these equations are
appropriate for self-consistently determining whether an
anomalously large radial electron heat flux can result from
the parallel transport of heat along the braided magnetic
fields produced by resistive tearing and ballooning modes.
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APPENDIX: LINEARIZED EQUATIONS AND THE
MERCIER CRITERION

We now show that our reduced resistive MHD equa-
tions are sufficiently accurate to reproduce the Mercier crite-
rion for a large-aspect-ratio torus. To show this, we first
linearize the equations about an axisymmetric equilibrium
and look for solutions in a region 4 €a around the rational
surface ¢ = m/n. The integers m and 7 are poloidal and to-
roidal mode numbers and the safety factor ¢(y), which is a
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function only of the equilibrium flux ¢, is defined as

() = (BV¢ )/ (B-Vy),
where ¢ and y are the toroidal and poloidal angles, respec-
tively, and the field line average of a quantity A is given by

dl /B

(4y=11l/B)\4
fdl/B
It is convenient to expand the perturbed quantities in Ha-
mada coordinates as

A (8,)exp(yt + inu),
where v is the growth rate, u = { — m@ /n, and € and § are
the poloidal and toroidal Hamada coordinates. Explicit re-
presentations for & and ¢ can be derived from the equations

BV = (B-Vy),

BV, = (BV¢),
so that @ and { represent the field line averaged poloidal and
toroidal angles. The safety factor g is given by the local pitch
of @ and ¢,

9(¥) = (B-VS)/(B-VE).
These coordinates are useful because B and BV have simple
representations:

B= VuXVt// + (g — m/n)Vy X V6,

vt (54 )2
qRO 80 du
Our linearized equations are given by
J, Yy
‘;”f V4B, —BVL 4 87 bxXw¥p (Al)
|Vy|? A¢¢ =J||B/B0, (A2)
~ V& D
VB + inp,® + Vsp(2 bXeV® | g L
47 -
~ 25D (V400 ) =0, (A3)
B;
¥Bpb, = — BVp — inByp A4, (A4)
DBJ, = —BV® + yB A, (AS)

where v” and p are the perturbed velocity and pressure,
cJ” /41 is the perturbed parallel current, @ /c is the per-
turbed electrostatic potential, and B} ROA /B? is the per-
turbed poloidal flux function. The quantity D is the resistive
diffusion coefficient

D = c*y/4m,

and the subscript 1 denotes d /.

In deriving Eqgs. (A1)~(A5) we have assumed that the
gradient operator when acting on perturbed quantities is
dominated by the derivative in the 3 direction, i.e.,
V~|Vy|~'V¢»V~4 ~'>a" ' Furthermore, terms resulting
from gradients of the equilibrium current density are
dropped because they are not important in the vicinity of the
rational surface.

As in the case of arbitrary aspect ratio and arbitrary 5,
we can further simplify Eqs. (A1)—AS5) by deriving a set of
equations for the field-line-averaged (6-averaged) quantities,
($), (4), (p), and (D) ). We carry out this calculation in
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two steps. In the first step we define a small parameter
€=4 /a,

which is a measure of the characteristic length of the pertur-
bations along Vi, and scale the growth rate and resistivity as

Y~ 4~ E’

n~43~e3,
This ordering yields the familiar scaling ¥ ~ '/ for resistive
modes and reduces to our previous ordering for €~ 2. Nev-
ertheless, at this stage we consider € to be independent of the
aspect ratio € and derive the averaged equations by carrying
out an expansion in , taking all equilibrium quantities and
their variations to be of order unity. In the second step, we
expand the coefficients in the averaged equations in powers
of ¢, the aspect ratio, to obtain the Mercier criterion, for a
large-aspect-ratio, low-8 tokamak.

The operator B-V can be written as

BV =BV’ + BV},
where
BVO B, d
gR, 90’
and
BV' = &(q — m) = Bo g —m),
qR, n/ du qR,
with
B-V' ~£B-V°,

Accordingly, we expand the variables ¢, p, .7” , A j»and 9 in
an ascending series in €. With our assumptions about the
scaling of the growth rate, the resistivity, and the perpendi-
cular and parallel derivatives, we find that Egs. (A1)}~(A5)
require

™
I
S
+
S
+

(=4

p=p"'+p+ ..,

A=A°+A'+ .,

Jy=T 7 +T 7+
and

Oy =07 "4+ 0f + .

where the superscripts refer to the order in € of each quanti-
ty. In this case the leading-order versions of Egs. (A1)—(A5)
become

Ji? bX KV
0=pBv-! 87 51, A6
7 7 P (A6)
\V¢|*4%, =J [ *B/B, (A7)
—1
M ¢0 + B v° , (A8)
B B
0= — B-Voﬁ‘l, (A9)
and
0= — B-V°®°. (A10)
From Egs. (A9) and (A 10) we conclude that
PO=D°W) =(D°), F'=p"'W=F"" (ALl
that is, @ ° and ! are flux functions.
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The equilibrium vorticity equation assumes the form

J) bX KV
BVOIL 4 2, 2RKTY , —0. Al2
B + 2 B Py ( )
Thus, Egs. (A6) and (A8) may be integrated to yield
= (0B~(oB )y /p, + T2, (A13)
b ' = (0B — (aB)®y/(4mp,) + (5 "), (A14)

where coB E41rJ" and we have expressed the constant of
integration in Egs. (13) and (14) in terms of the averaged
functions (J~ i %) and (v” 1) Equatlons (A13) and (A14)
yield the @ variation of J |~ *and b o !in terms of their field-
line-averaged counterparts. The 6 variation of A4 ° can be cal-
culated from Egs. (A7) and (A13). To obtain equations for
the averaged functions ( ®9),..., we average the next-order
versions of Egs. (A1)—{A5) over 6. For example, the order &°
and €' versions of Egs. (A4) and (A5) become

vpBo '= —BV° ~BV'p~! —inByp,A4°, (A15)
DBJ = —BV°®! —B-V'$° + yB,d°. (A16)
The unknown functions @ * and ° are eliminated from these
equations by integrating over & and using the periodicity
constraint. The resulting equations are

¥p(Bo ') = — (BV)(p~') —inByp,(4°), (Al7)

D(BJ %) = — (BV)(D°) + yBy(4°). (A18)
We then combine Egs. (A17) and (A18) with Egs. (A13) and
(A14) to obtain expressions for (;” ') and J i %) in terms of

(@°), (p~'),and (4 °). We carry out the same procedure on
Eqs. (A1) and (A3) to obtain equations for (@ °) and (5~ "):

L2V (B ).

0

N
and
(B~ ‘)+znp¢<¢°>+m(<B’V‘ H
3SR 33) a0
(A20)

—B—ZD<|V¢|2><;3-‘>W) -

The terms involving @ |, and Py in Egs. (A19) and (A20) can
be simplified using Eq. (A12). For example,
. — (p°B-V° 00
8ﬂ_<bXKV¢ 133) _ yBV°o) (0B >¢’
B Py by

(A21)

where we have commuted the ¢ derivative in Eq. (A21) with
the equilibrium quantities due to the fact that the dominant
¥ dependence arises from the radial structure of perturba-
tions. The final average in Eq. (A21) can be completed by
multiplying Eq. (A 15) by o and averaging. Similar manipula-
tions can be carried out to simplify Eq. (A20). The final equa-
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tion for {4 °) is obtained by directly averaging Eq. (A7).
The detailed algebraic steps required to complete the

averaging of Eqs. (A7) and (A17)—(A20) are lengthy but not

difficult and are not presented here. The final result is a sys-

tem of coupled differential equations for {(®°), ('), and

(4°),

¥ (4ap/BIK VY + TP Yy,

=D ik, ({4 ) — ik (D))
+ in(d4nG {p) — T,Rp, (4 o) (A22)
D (|Vy|™2) " A )y, =¥(d) — ik (D) + DT,R.( ),
(A23)
and
~ 477'7/51’ T1 2 =
"o~ p(1+1)(ver) ()
+ %kn (ky (P + np, (4))
+inlpy — ¥ pGHDP) + vy.pToR(d ), =0, (A24)
where ¢; = (y,p/p)"/* is the sound speed,
Lyt (,_m
ky = B (B-V") R (q . ) (A25)
G=2 <bXK~Vu> _ 47P¢T4<Bp_2> + ﬁ!ﬁ_, (A26)
B q

and the superscripts on the perturbed quantities have been
dropped for simplicity. The quantities T,—7, are dimension-
less coefficients which are nonzero in toroidal geometry,

_ _4mTBs ((B?P) 0B\ _ 2 (o7
: <|v¢12>P3(<Bz> <BZ>2) 7> 1A
(4m) "B, ((B%0) ((B’0))
T,= — - ~€, (A28
(G ) W
_ (477 'By ((0BY) ) _
= ( o s (0))~e (A29)
and
B (g, (BT
I= i (<<B %)) ((32») & (A30)
where

(A4 N =(|Ve|~24)/{|V¥|7?).
The coefficient T, in the vorticity equation and the cross-
field particle diffusion coefficient is the Pfirsch-Schluter en-
hancement of the inertia in toroidal geometry which results
from the pressure-driven parallel flow. These equations are
consistent with the low-3, large-aspect-ratio limit of the
equations presented in Ref. 9.

Finally, to obtain the Mercier criterion, we take the lim-
it ¥, D—0. From (A23) and (A24), we obtain

7’(2) — ik, (a) =0,
npy (A ) + ky(B) =0,

and we then expand & around the rational surface ¢,, k|
= k;,(¥ — ¥,), to obtain the equation

(4) 4y + [Du/(-4,]{4) =0,
where

(A31)
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(B
o (B ((Bo))?
+ BRI (B <<BZ>>2)
b xXxVu
]

Stability requires that the solutions to (A31) be nonoscilla-
tory or

Dy <} (A33)
Equations (A32) and (A33) constitute the Mercier criterion
for a low-83, large-aspect-ratio tokamak, where B = B,R,/R,
B and (bXx)/B are given in (20) and (25) and ¢ and 47J, /Bc
are solutions of the equilibrium equations

R*V-R ~*V¢ = R, B0, (A34)

B-Vo + 87p,[(bXx)/B 1-Vy = 0. (A35)
To lowest order the pressure term in (A35) can be neglected

and o = g4(¢). Corrections to o can then be calculated by
including the pressure,

o =04(¢f) — 87p, (R — Ro)/BoR,. (A36)
The equilibrium flux then satisfies the equation
R?V-R 7>V = BoRooo()) — 87py(R — Ro).  (A37)

Both Eq. (A37) for ¥ and Eq. {A36) for o are valid through
first order in € as are our previous expressions for B and
bX«/B. We will now show that these equilibrium quantities
are sufficiently accurate to evaluate the Mercier criterion in
{A33}.

Each of the three terms on the right side of (A32) are of
the same order. In the expression for the average curvature,
the lowest-order toroidal curvature averages to zero
((3-V8 ) =0). The lowest-order surviving terms {such as the
poloidal curvature) are of order € smaller so that

py{(bX®Vu)/B)~R 4,

Since we have included corrections of order € to all of our
equilibrium quantities, the average curvature can be evaluat-
ed to the requisite order. That the same is true for the two
other terms in (A32) is perhaps less obvious. In the shear
term in (A32),

(o) — ({B?0))/((B?)) ~0€, (A38)

thus it superficially appears as if corrections to o and B? of
order €” are required to evaluate this expression. This is not
the case. Each of the terms in Eq. (A38) can be expanded as a
power series in the aspect ratio as

0 = 0, + €0, €08 ¥ + €203 cos 2y + €05 + ...,
B=B,+e€B,cosy+€B)cos2y +€B3 + ...

Such an expansion was carried out, for example, in Ref. 10.
The field line average § d/ /B can similarly be expressed as an
integral over the poloidal angle y. The only terms which
survive the averaging process involve cross products of the y
dependence of two quantities such as o, B,. Thus, to evaluate
(A38) and the remainder of (A32) only corrections to o, B,
and ¢ of order € must be retained.

For a large-aspect-ratio torus with shifted circular flux
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surfaces, Dy, can be evaluated explicitly as in Ref. 10:

Dy -2zl d(i L)
R B ar g’(r)
where L, = g’R,/(r dq/dr) is the magnetic shear length.
Since for normal profiles dp/dr < 0, the average curvature is
favorable for ¢ > 1. Moreover within our ordering

Dy ~€,

For dg/dr~r~"so that the Mercier criterion is usually satis-
fied even for g < 1. In a region where ¢ <1 and dg/dr—0,
instability is possible. In any case our reduced nonlinear
equations correctly include the average favorable magnetic
curvature in a torus with g > 1.
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